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1. Introduction

The conduct of monetary policy can be considerecarasoptimal
control task. As such, it has been an intensivearet subject for many
years. In the framework of macroeconometric modélg study of
optimal monetary policy can be found, for exampie,Chow’s work
(1976). Today, under the dominance of the New Ksime models,
which is seen as the theoretical background for etayg policy, this
study has re-emerged, see Levin and Williams (208%ensson and
Tetlow (2006) and Orphanides and Williams (20083. the position of
New Keynesian models is so prevalent, every selfeeted central bank
in developedountriesoftenclaimsthatthesemodelsaretheirfundamental
analytical tool of their monetary policy, and thaal monetary policy
decisions are based on the outputs of these madetbis regard, the
Czech National Bank is no exception (see Andertd.e2009).

In the literature, New Keynesian models often aresented in a
discontinuous time fashion (Gali, 2008) which magvén some
advantages, but in a discrete time framework it tvas disadvantage:
discrete dynamic theory is not convenient for datiie analysis of
solutions (see Glass et al, 2008) time. To filsthap in the literature, we
propose a continuous time version of the New Kegmesnodel and
investigate the impact of monetary policy conduaedording to the loss
function or to the Taylor rule by a central bank.order to be able to do
so, first we derive a deterministic and continunas-linear two-equation
New-Keynesian model. One of them is the IS equatibrrommodity
market with a logistic investment function to make dynamics richer.
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The second one is the Phillips curve which connboth the real and
nominal sector of the economy. Monetary policy mstmodel is
performed in the inflation targeting regime firstcarding to the loss
function and then according to the Taylor rule.

To show how such a model would work, we give twaragples of
their functioning. First we construct the optimantrol problem using
minimization of loss function. The problem formw@dtby this approach
IS a non-linear one. As such it can be solved bgguthe Pontryagin’s
principle, whose theoretical background will beeHyi discussed later.
Since solving a non-linear control problem with ti®ntryagin’s
principle can be very difficult, sometimes even alaable, for this
purpose we suggest the use of fuzzy control. Fuzaytrol is a new
control approach which may succeed when other tioadil control
methods are unable to deal with. An overview ofsgale applications in
technical and other areas can be found in Driangbwal (1996) and
Novak (2000). The application of fuzzy control isoeomics can be
found in the work of Kukal and Tran Van Quang (2013

Then as an alternative way to investigate mongialgy as a control
problem, we establish the model with the same &traof dynamics with
the use of a modified Taylor rule. Taylor rule iseaction function of a
central bank to an actual state of an economy.kérihe case with a loss
function, which is a typical optimization problemmonetary policy in
inflation targeting regime with the use of the Tayfule is conducted in
such a way that interest rate is continuously maatpd in order to get
the whole system to reach a desirable state. $his & sharp contrast to
the case with the loss function. In this case, oantrol problem
corresponds to the bang-bang principle. Here therast rate is pre-
determined to move inside an interval. The optirmalution of the
problem then requires the interest rate to switcmnfits maximum to
minimum and vice versa. We will show how these teases work
through the numerical examples.

2. Reduced form of New-Keynesian Model

The dynamic of an economy with an active centratkbaan be
described by two differential equations. The fimie represents the
dynamics of commodity market. The original matheoahidescription of
commodity market is the continuolS-LM model (Kodera and Malek,
2008) as follows:
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Y = w[I(Y,R(t) — () — S(Y(£), R(t) — m(t))]
where Y = production,

| = investment,

R = nominal interest rate,

S = saving quantity,

| and S are functions ofY, R andz. The dynamics of production is
generated in this way. Let’'s suppd3d. It means the right hand side of
the equation is negative. Then the left hand sidstrgo negative too and
vice versaDividing the above equation b, we get:

re _ lI(Y(t),R(t) —n(®) _SEE,RM —m®)]

Yo Y (o) Y(t)

Asy(t) = logY(t), we can rearrange the equation above as:

. 1(e¥®,R() — () S(e¥®,R(t) —n(t))
yo =w l BI0) - BI0) l

Denoting L(—'y)zi(.),%zs(.), the dynamics of production can be

expressed as follows:

y(6) = w[i(y(@®),R®) — () — s(y(©),R() — =(®))], (1)
where o > 0,

andi ands are the so called propensity to invest functiod propensity
to save function respectively, but from now on wédl eall them as an
investment and saving function for short.

The second behavioral equation in our model iPihidips curve in a
slightly different form:

o (©) — [%)]y ()

where 7' (t), stand for the fundamentatate of inflation and rate of
employment respectivelyy, is the rate of employment under zero

! More precisely, the rate of inflation is definegldmuation (2).

20



European Financial and Accounting Journal, 2018,8;mo. 1, pp. 18-38.

inflation. The firms’ demand of for labour is deténed from the
inversion of one factor production function

Y(t) = F(L(1)),

whereY(t), L(t) denotes production and level of employment retbpady.
The rate of employment is defined as labour demabdur supply ratio,
SO we obtain:

-1
o =i, g

where F*' denotes the inversion of production function ads the
households’ labour supply. In this model, laboupmy is constant. Let
us assume a geometrical adjustment process ofladfietion to its
fundamental rate as:

(t) = w[n/ () —m(®)].

Using (3) in equation (2) and substituting in tih®wee equation, after
taking logarithms and some rearrangement, we get:

() = w{y[g T (y(®) — n — vo] — n(8)}, (4)

where g71(y(t)) =logF1(e*®@), y(t) =logY(t), n=1logN, and
v, = logV,. Equations (1) and (4) constitute an economic oyoa
system which generates trajectories of productrahiaflation.

3. Logistic Investment Function

To make the dynamics of variables in the model noor@plex, we
modify the investment function in the following wayetu(R(t) — 7 (t))
be reciprocal function of real interest rate:

_nr
R(t)-m(t) '

u(R(t) —m(t)) =
and productiory is a logistic function

1
ly®) = = -

Investment function then is a productucéndy as
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i(O,REO) = 7(D) = u(R(E) - 7))
— h (5)
(Rt — () + ce~by®)Y

The savings function is assumed to be linear indgecton and real
interest rate

S(Y(t)'R(t) - ﬂ(t)) =50+ 51y(t) + 5, (R(t) - ﬂ(t))- (6)

whereh, b, cin (5) sy, s; ands, in (6) are positive parameters. Plugging
(5) and (6) into equation (1), we have

Y1) = w[J(t) — 5o — 517 (1) — 5,(R() = m(D))], w > 0. @)
h
- (R(t)-m(®))(1+ceby®)’

where J(t)

We assume that in equation (4) production functi®rone-factor
Cobb Douglas function as follows:

Y(t) = AL*%(t).

Then the demand for labour is the inversion of CDioliglas production
function

1
L) = [A7'Y(D)]T-e.
Taking logarithm of both sides, we obtain

1
g y®) =11t) =— () —a).

l1—«a

Substituting it into equation (4), we have

() = B{y [ (0 — @) —n—v| - n(®)}, >0, ©)

The system of equations (7) and (8) is a continuoue version of
New-Keynesian model.
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4. Lossfunction

Inflation targeting problem is often specified as @ptimal control
problem. In this case behavior of the central bianksually described by
New Keynesian economics loss function. Mainly ib&ésed on the shape
of function introduced authors Barro and Gordor8@)9

Uy, 7(®) = (y©) = y,)" + (n(®) - m,)°.

As we decided for continuous approach to this mobltime variable
t obtains values from infinite interval [63) and optimization in infinite
horizon isexpressed by minimization of improper integralasfd function

[oe)

J(y,m) =f U(y(t), m(t))e Ptdt =
0

o 9)
j [((£) = mg)? + (y(t) — yg)?| e~ PHdt.

Relations (7), (8) and (9) constitute continuousirogl control problem
in infinite horizon.

5. Zero Inflation Steady State

The steady state solution of the problem (1), (43l 49) is the
solution, where state and control variables do c¢l@nge in time, let
y(t) = y,m(t) = 0, R(t) = R. ltis essential for the structure of the task.
Keeping these variables unchanged, the mentionedlggn becomes a
problem:

Minimize
JGm) = [ [(F =1 + (7 = yg)*] e~

Lo 2 4 (o 2
=;[(7T—T[g) +(y_yg) ]

Subject to
0 =i(y,R—7) —s(¥,R—1). (10)
O=ﬁ(}7—a)—n—v0—7_t. (12)
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We construct known Lagrangian for steady statelprob
1 = 2 > 2
L =;[(T[_7Tg) +(y_YQ) ]
+ wali(,R — ) —s(¥,R — )]
1
+ 1 [ﬁ(_l_a()_’_a)_n_%)_ﬁ]

Differentiating with respect tgy, T, R, denoting 11 = pu1, 42 = puo,
we get

Ly:2()_/ _ yg) n Al [6i(37,§—ﬁ) _ 65(37,1?—ﬁ)] 1 1

oy oy 20a) 0, (12)
— a(_;E__) 0 (_’R__)
2+ [BOER BOEB) oy
_, [0iGR-7) 8s@.R-m)] _
LR_Al[ aR aR ] =0 (14)
As 9i(¥,R-T)

M < 0 and BEED
PY:

> 0, 1;=0, what results from equation
(14). Further, from (12) and (13) we get

_ 1 1 — 1
y:yg—glzm, T[:T[g‘}‘zlz. (15)

Unknown quantitie®, 1, are computed from equations (10), (11). From
equation (11) we express

1 = Zﬁ(yg—a)—n—vo
, =24~

( 1 )2+1 ) (16)
1+a
From (15) we get

g 0p—a)-n-w
g_ 1 )] (17)
1+—a+1+a
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1
+1+—a(yg—“2)—"—”o_

(rra) +1

Steady state problem has simple optimal solujign given by (17)
andR given by (5). Solving this problem and considerggo inflation
steady state as an inflation target, we get insbé#l7)

T[:T[g

Y=Yy, T=Ty,

Steady state solution of the model is very impdrta@cause it is
usually the final continuing strategy in a modelogitimal control with
infinite horizon.

6. Pontryagin principle

To solve and analyse we choose Pontryagin prin@pla relatively
simple method for reaching of our objectives. Hoe solution of the
problem given by equations (1)-(3) Pontryagin pptec(Pontryagin et al.
(1976), Jahn (2007)) is used. The Hamiltonian efgloblem has a form

HOmR) = = [(y(0) =) + (r(®) = )| +
+, (Oali(y(©),R() — (1)) — s(y(©), R(®) — n(®))] (18)

0208 [ 00 — @) ()~ vo| - n0}

The Pontryagin principle among others states fhtaei solution of an
optimal control problem minimizes objective functad, then the
Hamiltonian reach maximum as a function Rf But the expression
[i(y(®),R(®) — () — s(y(6),R(t) — ()] decreases irR, so the
Hamiltonian reaches its maximum Ry or in R; which depends on
positivity or negativity ofy, (t). The optimal control solution thus takes
either the extreme values of control variable andalled the bang-bang
optimal control solution.

The co-state equations are

1
1—«a

P1(0) = 2[y() —y e Pt — By P1(0),
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0i d
~42(6) |55 (60, RO = 7(0)) = - ((0), RO) ~ ()|

Pa(8) = 2[m(t) — mgle™P" = Bypa (8).
i d
(0 [~ (O RO = 7(0) — 5~ (¥, RE — )],

As the system of co-state equations is a non-aatons one, to re-
arrange it by multiplying the whole system witH, we get

ePlyp, (t) = —Z[Y(t) - }’g] — ByePta,(t)
0i 0s
—eps(6) |35 (76, RO) = 7(0) = 5 ((6), R() =)

e, () = =2[m(t) — my] — BreP i, (1)
N
— ey () |~ (v(©), R — 7(0)
ds
- = (YO, R(®) - 7(0)|

Let us definep;(t) = e”*y;(t), j=1, 2. Taking its derivative with
respect td we get

p;(t) = pePty;(t)+ePr;(2).

Plugging it to (18) and the co-state system equoafiove get the
Hamiltonian multiplied byt and new transformed co-state equations.

e’*H(y,m,R) = H,(y,m, R)
= |6® ~y0)" + (r®) = mp)"| +
(19)

+p1(Oali(y(@®),R®) — n(t)) — s(y(©), R() — m(1))]
+ Oy + By (®) —yy)].
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pa () = 2y(6) —y =12 (0).

N
~ (0 |35, 60, RO) = 7))

3 (20)
S
HUOLIORLIOE o
p2(t) = m(t) — (By — p)p2(t)
2O [ (), RO ~ 7))
ar (21)

ds
- = (y(©,R® — ()]

The system of equations (19), (20) and (21) willused to find the
optimal solutions in the next section.

Exclusion of evidently non-optimal regimes

Solving analytically the whole system describedelgyations (19) —
(21) is very complicated. Therefore, we only use dnalytical approach
to exclude some trajectories which are not optimiat begin with
assumptiony>yy. First we prove that it cannot be optimal to keke
interest rate at levé®, under conditiory>y,. Let us assume the opposite
statement, i.e. keeping the interest rate Rat In accordance with
Pontryagin principld?y should maximizé,, which implyp;(t)>0. Let

di )
At = — é (y(©),R(t) — () + % (y(©), R(®) — () + p,
c=—@—-p)

_ i as
B(t) = o (y(©),R(t) — (1)) — o (y(©),R(t) — m(D)).
Using the above expressions the system (20), ékEsta form:

p1 (1) = 2(y(®) — y4) + p1 (DA() — Bp2 (D),
p2(t) = 2n(t) — p1(O)B(t) — (¥ — p)p2 (1).

Linearizing it in the pointy 7, Rp1, p2)=(Yg, 0, Ro, 0, 0) we get:
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p1(t) = p1 (DA — Bp2 (D), (22)
P2(t) = —p1()B + cp,(¢), (23)
where A = —g—;(yg,Ro) + Z—;(yg,RO) +p,

c =c= - - p)é
l S
B = ﬁ(yg' Ro) — E(YQ’RO)'

The characteristic equation of the linearized syst22), (23) is
A2 —(A+c)A+Ac— BB = 0.

The roots of characteristic equations are positprevided that
Ac — B > 0, thus the state in timi is not accessible, becaus#t)>0,
and pi(t)>0 for t<t;. Let Ac — B <0, pi(t)>0. Assume thaip(t)
decrease to 0. In this capgt) increase and according to equation (22)
p2(t)>0 and thus cannot reach 0. We can analogouskephat keeping
R at Ry, cannot be optimal. As obtaining a complete aied/solution is
theoretically challenging and time consuming we page that using
fuzzy regulator to get an optimal solution is mappropriate approach in
this case.

7. Using Fuzzy Regulator

The principle of fuzzy regulator is not so compl&{orking with a
fuzzy regulator system only requires to understiedoasic principles of
how to control this system. These basic principes calledcontrol
strategy (for more detailed explanation of this concepte $&riankov
(1993) and Novak (2000)). Fuzzy regulator is aogiredicates of type If
- Then. These predicates are formulated in natlamaguage. Let us
illustrate the use of fuzzy regulator in a simpledal of central bank.
Suppose that a central bank implements its choseretary policy with
the inflation targeting regime. The central bankuldochange the short-
term interest rate one way or the other way whemguwecognizes that
there would be some substantial future deviationthef product and
inflation from its targets and the change in therskerm interest rate
does not affect its primary task: keeping the prstability in the
economy. Optimal control of analyzed system regguinsing bang-bang
regulator. It is considerable advantage lying i f#ct that if the central
bank changes the interest rate it does not needltalate the size of the
change. For the central bank the bounds of theestaate should be
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known and the bank can set the interest rate edlume to the lower
bound or the upper bound. The list of optimal movemterest rate taken
by a central bank in the bang-bang fuzzy regulatiamework is shown

in Tab 1.

Tab. 1: Thelist of optimal moves of interest rate

Difference y-yn

Difference z-my

Control variableR

Big and negative

Big and negative

Lower bourkl

Small and negative

Small and negative

No small

Zero

Zero

Use previous experience

1%

Small and positive

Small and positive

No big

Big and positive

Big and positive

Upper bouri

Now let’s proceed with a numerical model mimickegeal economy.
We assume that the central bank targets potentaalupty, and zero
inflation. Thus:

a
" (1+R-7(®)( + e Oy

s(y,R—m) =5y +5s,9(t) + SZ(R — n(t)).

i(y,R—m)

For this economy we suppose that in accordance redlity, this set
of parameter values is valid:= 0.87;a=0.42;b = 6; 5 = 0.12;5, = 0.8;
S = 1.6;4=0.05;y, = 0;p = 0.05;Ry = 0.04;R; = 0.06;

Plugging them into equations (1)-(4) we get:
Jom) = w2+ y@?1 e,
0

CrN 0.42
y®) =a [(1+R—n(t))(1+e‘6y(t))

n(@)| 7 = {r [ 00 ~ &)~ n—w| -7}, p>0,

0.045 <R < 0.06.

—0.12 - 0.8y(t) — 1.6(R —

The initial conditions arg(0) = 0.5, 7(0) = 0.06.
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Suppose that central bank evaluates its policyhatdand of each
guarter and implements the approved policy after tvonths. It switches
interest rate after two month whenever find thatdifferencey —y, have
changed its sign. When solving the optimal conprablem with infinite
horizon by the bang-bang principle, we use the Haoninterest rates for
pre-stationary control until the steady state &cheed. The same strategy
we choose when using fuzzy regulator. We staiitreg t = 0 withy = 0.5
which is above its potential, so we set the interate at maximum 0.06.
As the result, the production decreases. After é8ogs it reaches its
potentialyo. As we assume it takes other 2 periods for us aenthe
decision about the interest rate. At period 20thasproduction is under
its potential, we set the interest rate at its mumn of 0.045. With a low

Figure 1. Smoothing output gap by using a fuzzy regulator
()

0.5

0.4F

0.3}

0.2F \

0.1¢

., e
1 el | e L

10 20~ 30 40 50 60

I

Interest starts increasing and overpasses its fteat period 27.
According to the assumption we make at the begmnintakes another
guarter for the central bank to evaluate its rdte,production monetary
policy and 2 periods to reset the interest ratec&the production is very
close to the potential product, there is no needetothe interest rate at
maximum and minimum. So, at period 32, we setnkerest rate at 0.052
at the middle of the interval. The change of indereate causes the
reversion of the product to its potential. As theduct moves closely
around its potential, the central bank only need8ne-tune the interest
rate to steer the product so that it converges #mhoto it potential. In
our case the interest rate needs to be set abthe of 0.05. Fig. 1 shows
how the product converges to its potential usingzyuregulator. The
vertical axis of the figure shows the size of thé&pot gap and the
horizontal axis represents the time in months. fasas the difference
between the real inflation and the inflation targetconcerned, by the
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nature of the Phillips curve, the inflation adapésy quickly and after
several periods it approaches zero and stays ugetafitom then on.
Therefore, this simple model shows that using thatfyagin principle
combined with a fuzzy regulator, a central bankngsan inflation
targeting regime can reach its objectives in aikgly comfortable way.

8. A modified Taylor rule

The other approach to solve the problem of inflati@argeting is with
help of reaction function which is obviously givey Taylor rule. In our
model, we have a central bank which tries to altiv&abilize the
economy to reach zero inflation in steady statenibnetary policy is to
target the real inflation rate by following a madd Taylor rule (1993) in
this form:

R() =R+ 0,y(t) + 6,m(t), 6, >0, 0, >0, (24)

whereR is the interest rate in steady stalg,and6, are parameters. As
the system of differential equations (1) and (4% BaunknownsR(t),
y(t) andn(t), first we have to exogenously determReo that the zero
inflation steady state can be reached. Then thatisns of steady state
denoted as(y,R), meaning that in this state the production is time
invariant and inflation is a zero, must be the 8ohs of the system of
two equations (1) and (4):

0 =ali(y,R) —s(y,R)], a>0
= w{ylg™ () —n—vl.

9. Numerical example

To show how the model works, we need to find actetppropriate
values for parameters included in the model. Thim ieoblem we face is
that not all of them are observable, and others wvaay with time. Many
of them have not been tested in the literatureaspand it makes their
choice some time very speculative.

In equation (1) of investment function, we choskofeing numerical
valuesh = 0.42, b = 10,c = 1. The parameters of savings function are
So =0.12; s;, =0.8, s, =1.6, R =0.05. The adjustment parameter
w =4.2. In equation (4) we calibrate its parameters asowd. In
production function they are = 0.4,a = 0. For the labour supply, we
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have n = 0. The natural rate of employment, =0 and adjustment
parameter of Phillips curve = 0.1. Adjustment parameter of differential
equation (4)3 = 0.1. Putting them in equations (1) and (4), we obtain

y(t) = w[J — 0.12 — 0.8y(t) — 1.6(0.05 — 7(¢))] (25)

1
1-0.4

7(t) = 0.1 {0.1 [ y(t)] — n(t)} (26)

= 0.42
(0.05-7(t))(1+e~10¥(®)"

where J

As we chooser(t) = 0, equations (10) and (11) become:

/(7,0.05) = 0.42
HBES) = 0.05 — 2(6)) (1 + e-107)
—0.12 — 0.8y(t) — 1.6(0.05 — 7(¢)).
Figure 2 Investment and saving functions
i(v,R), s(»,R)
34_
B e BT Ve T Y

In figure 2, the graphs of investment function depieg ony (the
dashed line) and savings function (the solid liaed displayed. We can
observe the two curves intersect each other irethoents which are the
equilibria of commodity market. The middle pointtige equilibrium in
commodity market and it also is the point of steadgte with zero
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inflation. The first point on the left hand side the depressive
equilibrium in which deflation occurs in the economThe third
intersection is an equilibrium connected with pesitinflation and we
call it the point of booming equilibrium. The twouter points
representing depressive and booming equilibrium arst partial
equilibria because only commodity market clears.

Now, let's assume that the economy can be repreddit equations
(25) and (26) with stable interest rate 0.05. Wéocate such an economy
and the dynamics of its variables are shown inteig3 and 4.

Figure 3 Evolution of productionR=0.05

(1)

0.4} o AR S
0.2}
[ 10 20 30 40 50
—G.Eg
Figure 4 Evolution of inflation,R=0.05
7(1)
0.06 F,,a——-’"""”_
0.04f -7
0.02F
' ' ' ' L §

—0.02}
—0.04 \
—0.06¢F
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It can be seen that the trajectories of productionverges to stable
points of either depressive equilibrium or boomimge depending on
initial conditions. The dashed lines are the evohg of production and
inflation starting from some positive initial cotidns of production and
inflation and end up in the booming equilibrium. @re contrary, the
solid lines mark out the evolutions of productiordanflation (deflation)
converging towards the depressive equilibrium.

Figures 5 and 6 display the trajectories of prodacand inflation in
the case when central bank continuously managegesitrate according
to Taylor rule. By substituting expression (24)oirgquations (25) and
(26) and using the set of parameters’ values desgtrabove, we obtain
these two equations:

y(t) = w[] —0.12 — 0.8y(t) — 1.6(0.05 — (1) )],

1
1-0.4

() = 0.1 {0.1 [ y(t)] _ n(t)}

As the central bank continuously changes the istel@e according
to modified Taylor rule shown in (24) and with tamlting parameters
R =0.05, 6, = 0.05, 6, = 4.05, the trajectories of the variables of
interest are much more complex than in previoug easl either under-
shooting of production and over-shooting of infi@tican occur.

Figure 5 Evolution of production withr continuously managed by CB
w(?)
0.4}

0.2

34



European Financial and Accounting Journal, 2018,8;mo. 1, pp. 18-38.

Figure 6 Evolution of inflation wherRis continuously managed by CB
(1)
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~0.010f

Figure 7 displays the evolution of interest ratenaged continuously
by the central bank. In figures 5, 6 and 7, twaalges of our interest(t)
and z(t) as well as the interest rate start at their inadgt high values,
then they drop toward their equilibrium values. éaling to the sign of
these values, one may think that it must be thélestalepressive
equilibrium linked with deflation (see Figure 2).eWave experimented
with several sets of parameters’ values and itstannt that the economy
always ends up in this point. The answer to thestiore why it is so will
be the subject of further research.

Figure 7 Evolution of R continuously managed by CB
R(z)
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0.074

0.06}

0.05}
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Conclusion

In this work, we examine monetary policy condudigdh central bank as
an optimal control problem. In order to do so, wavé proposed a
continuous alternative to the traditional discre®rsion of the New
Keynesian model. We derive two principal equatiohghe continuous
version of the model and use loss function and diied Taylor-type
rule to study the dynamics of the whole systemfii@ a solution of the
system and analyse its behaviour, we select af seiitable values for all
parameters included in the model. Then we use Madliea to solve this
system of equations.

The results of our experiments have confirmed #het that monetary
policy operating under two different regimes, onéhvthe loss function,

the other with the modified Taylor rule as a reactiunction, leads to a
different outcome. Though from the mathematicaludtire of the

dynamics of the system, i.e. its dynamics IS cuamveé Phillips curve, and
from its formal characteristics it should be thensait turns out to not be
the case. In the experiment with loss function, we&e a continuous
optimal control problem with bang-bang optimal e¢ohprinciple. Using

the Taylor rule, the experiment has become a cbptablem. In order to

analyse it we selected a set of suitable valueslfggarameters included
in the model. The solution we have found diffemrireach other not only
in its magnitude, but also more importantly the tognprinciple are

different.

The results also show that monetary policy contirshpmanaged interest
rate brings relatively more complex dynamics in panson with the

case when loss function is used and the problem amatysed as a
continuous optimal control problem. Further, intbahalysed problems
we have also found that using a relatively simm@eision rule on interest
rate sometime can bring unexpected results.
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Monetary Policy asan Optimal Control Problem
Jan KODERA - Van Quang TRAN

ABSTRACT

This paper analyses the monetary policy of a ceb@ak in a simple
deterministic and continuous dynamic non-linear N&ynesian model
with an active central bank conducting monetaryigyolithin inflation

targeting framework. To meet this purpose, first werive two
differential equations capturing the dynamics ire teconomy: the
dynamic IS curve representing the commodity maddd the Phillips
curve capturing the connection between the realredinal sectors of
the economy in a continuous form. By introducingg@adratic loss
function commonly used in New Keynesian Economies get optimal
control problem which solution will be analysed hwihe use of fuzzy
control. Then we introduce a modified form of thaylor rule and
analyse the solution of the same differential equat capturing the
dynamics of the economy using Taylor rule insteftbss function. The
comparison of the solutions of both models will demonstrated in
examples in which the main characteristic of dyr@naf production and
inflation are displayed.

Key words: Deterministic continuous model; Dynamic IS curveewN
Keynesian Phillips curve; Loss function; Modifiegylor
rule; Optimal control problem.
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